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LETTER TO THE EDITOR

Estimating Prevalence, False-Positive Rate,
and False-Negative Rate with Use of Repeated
Testing When True Responses Are Unknown

To the Editor: We read with great interest the article by
Wong et al.1 We were especially interested in the approach
used to estimate false-positive (p10) and false-negative
(p01) rates of their copy-number variation (CNV)–detection
algorithm.

To estimate p10 and p01, Wong et al.1 performed six re-
peated experiments in which they applied their CNV-de-
tection algorithm each time on 24,392 clones from a single
female versus a male reference sample. Under the assump-
tion that all clones are non-CNV clones and all CNV calls
are false, an estimate of the maximum p10 is derived (note
that this underestimates the true maximum p10), and, by
the use of the binomial probability, the probability of call-
ing the same clone twice within six repeated experiments
is estimated to be 0.000445. On the basis of this low prob-
ability of calling the same (assumed) non-CNV clone twice,
Wong et al.1 assume that any clone called twice or more
often is a true CNV. The authors recognize that this assump-
tion is too strong, since a fraction of the single-occurrence
calls may represent true CNVs. Under this assumption,
they estimate p10 to be 0.2323% and p01 to be 45.3%.

The problem of estimating p10 and p01 for this CNV data
set is a problem of evaluating diagnostic tests without gold
standards.2 In these situations, the true responses (e.g., the
true CNV statuses) are unknown. If, in addition to p10 and
p01, the population prevalence (v1) is unknown, then there
are three parameters to be estimated. However, for a single
test performed once in a single population, the data pro-
vide only 1 df. One way to achieve additional degrees of
freedom is to apply the test several times to all individuals
(e.g., clones) in the population,2 as was done by Wong et
al.1

Dawid and Skene3 derived the observed data likelihood
(ODL) when true responses are unknown and repeated ex-
periments are performed. In our particular case of one type
of test (i.e., the CNV-detection algorithm) and six repeated
experiments, we have
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where n is the number of clones, d is the true CNV status
( for non-CNV clones; for CNV clones), t isd p 0 d p 1
the test result from the CNV-detection algorithm, vd is the
prevalence of the true status d,

p p P(test result p tFCNV status p d) ,td

and is the number of times clone i has test result t. Letnit

be the indicator variable for the true response of clonedid

i ( if clone i is of true status d). If the true responsesd p 1id

are available, then the complete data likelihood (CDL) is
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The maximum-likelihood estimates (MLEs) of the CDL
can be calculated analytically, and the estimators are
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The Bayes theorem can be used to get estimates of asdid

probabilities that the true response for clone i is d,
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However, the values of are unknown, so, to maximizedid

the ODL, Dawid and Skene3 suggest using the expectation-
maximization (EM) algorithm and proceed as follows:

1. Take initial estimates of (may be indicator variablesdid

or probabilities),
2. Use equations (1) and (2) to obtain estimates of ps

and vs,
3. Use equation (3) and the estimates of ps and vs from

step 2 to calculate new estimates of expressed asdid

probabilities, and
4. Repeat steps 2 and 3 until convergence is achieved

(difference in ODL from two successive steps is !10�6).

The observed Fisher information matrix of the ODL can
be derived analytically; hence, likelihood-based CIs for the
parameter estimates are easily calculated, as long as the
information matrix is invertible. The likelihood-based CIs
will be meaningful if the quadratic approximation of the
likelihood is good.

We applied the above EM algorithm to the data of Wong
et al.1 and obtained the estimates (95% CIv̂ p 0.6299%1

0.5213%–0.7384%), (95% CI 0.2026%–p̂ p 0.2283%10

0.2541%), and (95% CI 45.37%–52.46%).p̂ p 48.91%01

Additionally, we plotted the likelihood surface for fixed
values of , to make sure the estimates corresponded tov1

global maxima of the ODL. Note that our estimate ofp10

0.2283% is close to the estimate of 0.2323% of Wong et
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Table 1. Results from Nine Simulated Data Sets for Three
Scenarios, Each with Specific Values of n, , , andv p p1 10 01

Scenario, n, and
Parameter

True
Value
(%)

Point Estimate (%)

EM Algorithm (95% CI)
Procedure of
Wong et al.1

Scenario 1, ak p 5
:n p 500

v1 20.0000 20.46 (16.64–24.28) NA
p10 .2283 .07 (�.22 to .37) 8.23
p01 48.9100 46.69 (41.80–51.59) 14.58

:n p 1,000
v1 20.0000 20.82 (17.97–23.66) NA
p10 .2283 .07 (�.18 to .33) 8.62
p01 48.9100 50.71 (47.08–54.34) 15.00

:n p 25,000
v1 20.0000 20.05 (19.50–20.60) NA
p10 .2283 .24 (.19–.29) 8.39
p01 48.9100 49.07 (48.35–49.79) 14.37

Scenario 2, a:k p 4
:n p 500

v1 10.0000 9.19 (6.38–11.99) NA
p10 .2283 .29 (.01–.57) 2.60
p01 48.9100 49.86 (42.00–57.72) 29.17

:n p 1,000
v1 10.0000 9.57 (7.61–11.53) NA
p10 .2283 .34 (.14–.54) 2.38
p01 48.9100 46.79 (41.70–51.87) 28.17

:n p 25,000
v1 10.0000 10.20 (9.79–10.61) NA
p10 .2283 .19 (.15–.23) 2.70
p01 48.9100 49.68 (48.67–50.69) 27.44

Scenario 3, a:k p 2
:n p 500

v1 .6299 1.12 (�.26 to 2.51) NA
p10 .2283 .26 (.03–.49) .30
p01 48.9100 63.86 (36.42–91.30) 54.17

:n p 1,000
v1 .6299 .73 (.18–1.28) NA
p10 .2283 .23 (.11–.35) .23
p01 48.9100 40.04 (16.91–63.18) 38.10

:n p 25,000
v1 .6299 .62 (.51–.72) NA
p10 .2283 .23 (.20–.25) .23
p01 48.9100 47.56 (43.55–51.57) 44.17

NOTE.—Under each scenario, results from the EM algorithm and the
procedure of Wong et al.1 are given for three sample sizes (n). Under
the procedure of Wong et al.,1 we let the maximum binomial probability
be 0.1%; the value of k corresponding to this probability is given in
each case. NA p not applicable.

a k happened to be the same for all values of n within each scenario.

al.,1 but our estimate of of 48.91% is higher than theirp01

estimate of 45.3% (which falls just outside our 95% CI).
Because of the symmetric nature of the parameters, the

ODL has, in most cases, two equal local maxima; specif-
ically, the set of parameter values , , andv p x p p x1 1 10 2

give the same ODL as the parameter values:p p x01 3

, , and . For the abovev p 1 � x p p 1 � x p p 1 � x1 1 10 3 01 2

EM algorithm to result in unique parameter estimates, cor-
responding to one of the local maxima, it is therefore
necessary to assume that the CNV-detection algorithm
provides better than random classification of clones. This
assumption is similar to but not as strong as the assump-
tion of Wong et al.1 that all clones called twice or more
often represent true CNVs. Additional strengths of the EM
algorithm over the more ad hoc procedure of Wong et al.1

are (1) likelihood-based CIs may be derived, (2) an arbi-
trary threshold for declaring true CNVs is avoided, (3) the
prevalence, , of CNVs is also estimated (as the proportionv1

of BAC-array clones harboring CNVs detectable at the
false-positive rate of and false-negative rate of ), andp p10 01

(4) the EM algorithm works reasonably well in more sit-
uations than does the approach of Wong et al.1

Regarding the relative performance of the EM algo-
rithm, the estimation procedure of Wong et al.1 works
reasonably well for in the special case of low prevalencep10

and large sample size, but it fails when the prevalence
increases and the sample size decreases. The convergence
of the EM algorithm slows down considerably as the prev-
alence increases, and the search for a global maximum
often needs to be repeated from several starting values.

To illustrate these points, table 1 provides comparative
results from the EM algorithm and the procedure of Wong
et al.1 for simulated data. Data sets of three different sam-
ple sizes (i.e., number of , 1,000, and 25,000)clones p 500
are simulated under three different scenarios (1, 2, and 3).
Under all scenarios and are set equal to the estimatesp p10 01

of the EM algorithm for data of the Wong et al.,1 but the
prevalence, , is varied. Under scenarios 1 and 2, isv v1 1

assumed to be high (10% and 20%, respectively). However,
for scenario 3, is set to equal the estimate derived usingv1

the EM algorithm for the data of Wong et al.1 For each
clone, six test results are simulated; for non-CNV clones,
six Bernoulli random values are simulated with “success”
probability ; for CNV clones, the Bernoulli values havep10

“success” probability . Application of the procedure1 � p01

of Wong et al.1 requires one to set a maximum binomial
probability (point 2 in the previous paragraph) for assum-
ing clones called k or more times represent true CNVs. We
set this maximum probability to be 0.1%. This means that
a clone called �k times is assumed to be a true CNV clone
only if the binomial probability of calling a non-CNV
clone �k times is �0.1%; k is taken to be the smallest k
for which this condition holds.

As can be seen (table 1), the estimates from the Wong
et al.1 procedure are quite poor in the cases of high prev-
alence ( or ); the point estimates of andv p 10% 20% p1 10

are far from their true values and outside the 95% CIs.p01

Under scenario 3 of low prevalence ( ) andv p 0.6299%1

small number of clones ( or 1,000), the point es-n p 500
timates from the procedure of Wong et al.1 for are quitep01

far from the true value; the Wong et al.1 estimates of both
and are, however, within the 95% CIs. Regardingp p10 01

the choice of k, we examined five different simulated data
sets (results not shown) and found that the Wong et al.1

estimates strongly depend on k and hence on the choice
of the probability threshold. These analyses therefore
highlight the arbitrariness in the choice of probability
threshold and the importance of using an estimation pro-
cedure that is independent of the choice of this threshold,
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or k. In contrast, the EM algorithm requires no k at all,
and its estimates are quite close to the true values under
most scenarios and samples sizes, the 95% CIs cover the
true values in all cases, and the point estimates of all pa-
rameters improve as the number of clones is increased or
the prevalence decreased. In each case, only one data set
was simulated, so random variation due to the simulation
is not accounted for by averaging over many simulated
data sets. Complete evaluation of the performance of the
EM algorithm would require data sets to be simulated mul-
tiple times under each scenario. However, such an evalua-
tion is outside the scope of this letter.

Our proposed approach does not model any potential
dependence between clones on a given BAC array due to
variation in, for example, signal-to-noise ratios across BAC
arrays. Perhaps random-effects modeling—adding BAC ar-
ray IDs as a random component to the model—could help
account for this additional variation. However, we do not
expect that this issue would change the overall conclu-
sions of this letter.

This letter is not a criticism of the work of Wong et al.1

but rather a note that their procedure will not work well
in all cases, so authors facing problems similar to those
reported by Wong et al.1 will need to choose estimation
procedures that work in the special cases their data pro-
vide. Walter and Irwing4 and Hui and Zhou2 provide re-
views of methods for evaluation of diagnostic tests with-
out gold standards. Joseph et al.5 proposed a Bayesian es-
timation method for parameters of diagnostic tests in the
absence of a gold standard; however, it has been suggested6

that the method of Joseph et al.5 suffers from lack of good
large-sample properties. Shortly after we submitted our
letter, we became aware of another letter7 that describes
an alternative statistical approach for tackling the prob-
lems addressed here. The procedure is Bayesian and has
one very interesting feature, in that it allows one to es-
timate the number of calls expected in each category (i.e.,
categories of clones never called, called once, called twice,
etc.). However, because it is a Bayesian procedure, prior
distributions for and need to be specified. In anyp p10 01

event, as we have shown here, special care needs to be

taken when estimating prevalence and false-positive and
false-negative rates in the absence of a gold standard.
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